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A bs tr ac t

Background

The hyper-IgE syndrome (or Job’s syndrome) is a rare disorder of immunity and 
connective tissue characterized by dermatitis, boils, cyst-forming pneumonias, elevat-
ed serum IgE levels, retained primary dentition, and bone abnormalities. Inheritance 
is autosomal dominant; sporadic cases are also found.

Methods

We collected longitudinal clinical data on patients with the hyper-IgE syndrome 
and their families and assayed the levels of cytokines secreted by stimulated leuko-
cytes and the gene expression in resting and stimulated cells. These data impli-
cated the signal transducer and activator of transcription 3 gene (STAT3) as a candi-
date gene, which we then sequenced.

Results

We found increased levels of proinflammatory gene transcripts in unstimulated 
peripheral-blood neutrophils and mononuclear cells from patients with the hyper-
IgE syndrome, as compared with levels in control cells. In vitro cultures of mono-
nuclear cells from patients that were stimulated with lipopolysaccharide, with or 
without interferon-γ, had higher tumor necrosis factor α levels than did identically 
treated cells from unaffected persons (P = 0.003). In contrast, the cells from patients 
with the hyper-IgE syndrome generated lower levels of monocyte chemoattractant 
protein 1 in response to the presence of interleukin-6 (P = 0.03), suggesting a defect 
in interleukin-6 signaling through its downstream mediators, one of which is STAT3. 
We identified missense mutations and single-codon in-frame deletions in STAT3 in 
50 familial and sporadic cases of the hyper-IgE syndrome. Eighteen discrete muta-
tions, five of which were hot spots, were predicted to directly affect the DNA-bind-
ing and SRC homology 2 (SH2) domains.

Conclusions

Mutations in STAT3 underlie sporadic and dominant forms of the hyper-IgE syn-
drome, an immunodeficiency syndrome involving increased innate immune response, 
recurrent infections, and complex somatic features.
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The syndrome described as Job’s syn-
drome by Davis et al. in 19661 and as hy-
perimmunoglobulinemia E by Buckley et al. 

in 19722 was originally characterized by recur-
rent cold staphylococcal abscesses, pneumonia, 
eczema, hyperextensibility, and extreme elevation 
of IgE levels. Since then, additional features of the 
hyper-IgE syndrome have been recognized, includ-
ing scoliosis, pathologic fractures, pneumatoceles, 
delayed dental deciduation,3,4 coronary-artery an-
eurysms,5 brain lesions, and Chiari’s malforma-
tions.6 Pneumonia in patients with the hyper-IgE 
syndrome is typically caused by infections with 
Staphylococcus aureus, Haemophilus inf luenzae, or Strep-
tococcus pneumoniae and leads to pneumatoceles,3 
providing portals for fatal infections with bacte-
ria and filamentous fungi.7

Eosinophilia, eczema, and elevated IgE levels 
focused attention on the T helper cell Th1/Th2 
profile,8 but no primary defect was uncovered. 
Cytogenetic and linkage data suggested the pres-
ence of a locus on chromosome 4q, but no disease 
gene was found there.9 Microarray-based approach-
es have yielded inconsistent results.10,11 We there-
fore aimed to comprehensively describe the phe-
notypes of affected persons in a large cohort and 
to assay gene expression and in vitro cytokine 
production to identify relevant pathways.

Me thods

Patients and Controls

Patients suspected to have the hyper-IgE syndrome, 
or their parents, and their relatives gave written 
informed consent. These patients and relatives 
were enrolled in studies approved by the institu-
tional review board of the National Institute of 
Allergy and Infectious Diseases. We collected blood 
samples while patients were clinically well and 
were not receiving corticosteroids or nonsteroidal 
antiinflammatory drugs. An empirical scoring sys-
tem was used to calculate the risk of carrying the 
hyper-IgE syndrome trait on the basis of an ag-
gregation of diagnostic features.9 We arbitrarily 
categorized hyper-IgE syndrome scores of 0 to 15 
as unaffected, 16 to 39 as possibly affected, 40 to 
59 as probably affected, and 60 or more as defi-
nitely affected.9 We analyzed by microarray blood 
samples obtained from probands who were defi-
nitely affected (had scores of 60 or more) and were 
over the age of 16 years. We also performed cyto-

kine phenotyping on these samples, in addition 
to those from persons with familial and sporadic 
hyper-IgE syndrome (which included possibly and 
probably affected persons). Samples from 50 pa-
tients and 48 family members were available for 
sequence analysis. The race or ethnic group of pa-
tients was determined by a physician author and 
by self report (for details, see the Supplementary 
Appendix, available with the full text of this ar-
ticle at www.nejm.org). Control DNA was col-
lected according to several approved protocols 
from unaffected persons: 125 whites, 15 Hispan-
ics, 4 blacks, 2 Asians, 1 white Hispanic, 1 black 
Hispanic, and 10 persons of unknown ancestry. 
Race or ethnic group of these control subjects was 
self-reported.

Microarray Analysis

We isolated polymorphonuclear leukocytes and 
peripheral-blood mononuclear cells from venous 
blood samples and carried out phagocytosis and 
microarray assays as previously described.12,13 We 
labeled samples, allowed for hybridization of com-
plementary RNA to microarrays (HU133 Plus 2.0, 
Affymetrix), and scanned the microarrays accord-
ing to standard Affymetrix protocols. For each time 
point, we analyzed cells from 9 control donors of 
peripheral-blood mononuclear cells or 10 control 
donors of polymorphonuclear leukocytes and 7 pa-
tients with the hyper-IgE syndrome, using a sepa-
rate oligonucleotide array for each donor. One 
sample of stimulated control polymorphonuclear 
leukocytes for the 360-minute time point was lost 
owing to technical error.

We analyzed the gene-expression data by using 
Microarray Suite software, version 5.0 (Affymetrix), 
and GeneSpring software, version 5.0 (Silicon Ge-
netics), as described previously,12,13 but with modi-
fications. We defined genes as being differentially 
expressed when all three of the following crite-
ria were met: the gene was identified as “pres-
ent” by the Microarray Suite software in 8 of the 
9 samples of peripheral-blood mononuclear cells 
or 9 of the 10 samples of polymorphonuclear 
leukocytes from control subjects and in 6 of the 
7 samples of cells from patients, the difference in 
gene expression between the samples from con-
trol subjects and those from patients was twofold 
or greater, and the normalized signal intensity was 
at least 100. We carried out principal-component 
analysis using software from Partek and compared 
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the average difference intensity of transcript levels 
in cells from control subjects and patients with 
the use of Student’s t-test. Complete microarray 
data are provided, with analysis, in Tables 1, 2, 3, 
4, and 5 of the Supplementary Appendix. Raw data 
are available at the Gene Expression Omnibus 
Web site (www.ncbi.nlm.nih.gov/geo/) under ac-
cession number GSE8507. We visualized the im-
plicated biochemical pathways using Ingenuity 
Pathways Analysis software (Ingenuity Systems).

Cytokines

Peripheral-blood mononuclear cells were prepared 
with the use of density centrifugation from hepa-
rinized whole blood, as previously described.14 
Cells were stimulated for 48 hours at 37°C in 5% 
carbon dioxide with phytohemagglutinin (1:100), 
phytohemagglutinin with interleukin-12 (10 ng 
per milliliter), lipopolysaccharide (200 ng per mil-
liliter), lipopolysaccharide with interferon-γ (1000 
IU per milliliter), or interleukin-6 (40 ng per milli-
liter). The supernatants were harvested and stored 
at −20°C until cytokine levels could be measured 
with the use of plate-based methods (Meso Scale 
Discovery) or bead-based methods (BioRad Lu-
minex), according to the manufacturers’ recom-
mendations. The cytokine levels were compared 
with the use of a Mann–Whitney U test (Graph-
Pad Software), with P values of less than 0.05 con-
sidered to indicate statistical significance.

Sequencing

Complementary DNA (cDNA) was prepared from 
peripheral-blood mononuclear cells and neutro-
phils of unrelated probands and control subjects 
and was sequenced for the signal transducer and 
activator of transcription 3 gene (STAT3) (for a list 
of primers, see the Methods in the Supplemen-
tary Appendix). Sequencing was performed on an 
Applied Biosystems 3100 sequencer and analyzed 
using Sequencher software (Gene Codes). We also 
sequenced cDNA from peripheral-blood leuko-
cytes or transformed lymphoblastoid cell lines or 
genomic DNA of relatives. For sequencing of ge-
nomic DNA, polymerase-chain-reaction primers 
(available in the Supplementary Appendix) were 
chosen according to the proband’s mutation. Gen-
Bank recognizes three human isoforms of STAT3: 
NP_644805.1, NP_003141.2, and NP_998827.1. 
The amino acid positions reported here are for 
the isoform NP_644805.1.

Flow Cytometry for Detection  
of Phosphorylated STAT3

Peripheral-blood mononuclear cells from healthy 
adults or from patients with the hyper-IgE syn-
drome were isolated with the use of a Ficoll gra-
dient. Peripheral-blood mononuclear cells (1×106) 
were incubated in 100 μl of phosphate-buffered 
saline with 2% fetal-calf serum, either without 
stimuli or with interleukin-6 (10 ng per milliliter) 
(R&D Systems), for 25 or 60 minutes. Cells were 
fixed, permeabilized, and stained, as previously 
described.15 An Alexa Fluor 647 conjugated phos-
pho-STAT3 antibody against phospho-S727 (BD 
Biosciences) was used to identify intracellular or 
intranuclear phospho-STAT3. Mouse IgG1 (BD 
Biosciences) was used as isotype control. Analysis 
was carried out on a FACSCalibur flow cytometer 
(BD Biosciences) with Cell Quest software (BD Bio-
sciences).

Bioinformatics Analysis of Missense Changes 
in STAT3

For the missense changes detected, we used bio-
informatics methods encoded in the programs 
Sorting Intolerant from Tolerant (SIFT)16 and Poly-
Phen.17 SIFT reports the probability that the sub-
stitution is deleterious by predicting whether the 
substitution is or is not probably damaging. Poly-
Phen reports a score, with putatively benign chang-
es scored from 0.00 to 1.50, possibly damaging 
changes scored from 1.51 to 2.00, and probably 
damaging changes scored as 2.01 or greater. 

R esult s

Gene-Expression Profiling of Leukocytes

We found greater levels of expression of proin-
flammatory molecules in unstimulated and phago-
cytosis-stimulated leukocytes of patients with the 
hyper-IgE syndrome than in those of controls 
(Fig. 1 in the Supplementary Appendix and Ta-
bles 1, 2, 3, and 4 in the Supplementary Appendix). 
Thirty transcripts encoding proteins related to 
interferon signal transduction or typically induced 
by interferon showed elevated levels of expression 
in polymorphonuclear leukocytes from patients 
with the hyper-IgE syndrome (Table 1 in the Sup-
plementary Appendix). Known or putative genes 
involved in host defense were up-regulated in poly-
morphonuclear leukocytes and peripheral-blood 
mononuclear cells from the patients (Fig. 1C in 
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the Supplementary Appendix and Tables 1, 2, 
and 3 in the Supplementary Appendix). After 
phagocytosis, 15 genes encoding proteins related 
to interferon signal transduction or induced by 
interferon showed elevated levels of expression in 

polymorphonuclear leukocytes from patients, as 
compared with those from controls (Fig. 2 in the 
Supplementary Appendix and Table 4 in the Supple-
mentary Appendix). Taken together, these data 
suggest that cytokine-related signal transduction, 

Table 1. Stimulated Cytokine Production in Leukocytes from Patients with the Hyper-IgE Syndrome and in Those  
from Controls.*

Analyte and Stimulus Patient Control P Value

pg/ml

TNF-α

Unstimulated (LPS) 17.9±6.6 54.3±20.8 0.23

(N=38) (N=32)

LPS 1368.0±192.3 597.3±86.8 0.003

(N=38) (N=32)

LPS + interferon-γ 4244.0±382.5 3044.0±311.9 0.02

(N=38) (N=32)

Unstimulated (SAC) 19.7±8.0 68.1±27.3 0.22

(N=31) (N=24)

SAC 5651.0±519.9 2404.0±397.3 <0.001

(N=31) (N=24)

HKLM 2807.0±364.8 862.4±101.7 <0.001

(N=30) (N=12)

Interleukin-12p70

Unstimulated 5.8±0.7 10.3±3.4 0.77

(N=31) (N=24)

LPS 36.5±6.3 12.9±2.7 0.001

(N=30) (N=23)

LPS + interferon-γ 837.1±132.2 385.3±93.0 0.003

(N=31) (N=24)

Interferon-γ

Unstimulated 36.4±4.5 43.7±7.4 0.75

(N=31) (N=25)

PHA 127,610.0±17,956.0 71,238.0±11,382.0 0.03

(N=27) (N=24)

PHA + interleukin-12 158,823.0±14,900.0 102,820.0±20,715.0 0.03

(N=29) (N=23)

MCP-1

Unstimulated 346.4±263.3 252.5±145.6 0.07

(N=10) (N=6)

Interleukin-6 1761.0±878.7 4494.0±649.3 0.03

(N=10) (N=6) 

*	Plus–minus values are means ±SD. TNF-α denotes tumor necrosis factor α, LPS lipopolysaccharide, SAC Staphylo­
coccus aureus Cowan strain, HKLM heat-killed Listeria monocytogenes, and MCP-1 monocyte chemoattractant protein 1.
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Table 2. Results of STAT3 DNA Sequencing of Selected Probands and Family Members.*

Member
Race or Ethnic 

Group†
Hyper-IgE  

Syndrome Score‡ Mutation

Nucleotide and Amino Acid Domain Type

Family J001

Proband White 68 1144C→T, R382W DNA binding Sporadic

Daughter White 55 1144C→T, R382W DNA binding Transmitted

Daughter White 25 None

Husband White 1 None

Family J002

Proband White 90 1865C→T, T622I SH2 De novo

Daughter White 80 1865C→T, T622I SH2 Transmitted

Daughter White 6 None

Sister White 16 None

Sister White 25 None

Mother White 4 None

Father White 33 None

Wife White 16 None

Family J004

Proband White 87 1144C→T, R382W DNA binding Sporadic

Grandfather White Not scored None

Father White 3 None

Family J005

Proband White–Black 54 1144C→T, R382W DNA binding De novo

Father Black Not scored None

Mother White Not scored None

Family J006

Proband White 90 1151T→C, F384S DNA binding Sporadic

Family J007

Proband White 82 1268G→A, R423Q DNA binding Sporadic

Brother White 4 None

Sister White 3 None

Daughter White 82 1268G→A, R423Q DNA binding Transmitted

Sister White 24 None

Niece White 9 None

Mother White 6 None

Family J008

Proband White 79 1145G→A, R382Q DNA binding De novo

Father White 4 None

Mother White 3 None

Family J009

Proband White 82 1832G→A, S611N SH2 Sporadic

 

Copyright © 2007 Massachusetts Medical Society. All rights reserved. 
Downloaded from www.nejm.org at UNIV OF PENN LIBRARY on June 13, 2010 . 



STAT3 Mutations in the Hyper-IgE syndrome

n engl j med 357;16  www.nejm.org  october 18, 2007 1613

Table 2. (Continued.)

Member
Race or Ethnic 

Group†
Hyper-IgE  

Syndrome Score‡ Mutation

Nucleotide and Amino Acid Domain Type

Family J010

Proband White 85 1144C→T, R382W DNA binding De novo

Father White 9 None

Brother White 1 None

Sister White 4 None

Cousin White 5 None

Mother White 0 None

Family J011

Proband White 69 1909G→A, V637M SH2 Transmitted

Sister White 86 1909G→A, V637M SH2 Transmitted

Mother White 19 None

Family J012

Proband White 84 1387delGTG, V463del DNA binding Sporadic

Family J013

Proband White 66 1150T→C, F384L DNA binding Sporadic

Family J014

Proband White 96 1909G→A, V637M SH2 De novo

Father White 14 None

Mother White 16 None

Sister White 38 None

Sister White 5 None

Family J015

Proband White 96 1861T→G, F621V SH2 Sporadic

Family J016

Proband Asian 65 1268G→A, R423Q DNA binding De novo

Son Asian 34 1268G→A, R423Q DNA binding Transmitted

Daughter Asian 10 None

Daughter Asian 34 1268G→A, R423Q DNA binding Transmitted

Wife Asian 1 None

Father Asian 0 None

Mother Asian 1 None

Family J017

Proband White 82 1145G→A, R382Q DNA binding Transmitted

Brother White 3 None

Father White 48 1145A→G, R382Q mosaic DNA binding Sporadic

Mother White 1 None

Sister White 6 None

Brother White 67 1145G→A, R382Q DNA binding Transmitted
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Table 2. (Continued.)

Member
Race or Ethnic 

Group†
Hyper-IgE  

Syndrome Score‡ Mutation

Nucleotide and Amino Acid Domain Type

Family J020

Proband Black 100 1144C→T, R382W DNA binding Sporadic

Mother Black Not scored None

Family J021

Proband Black 71 1145G→A, R382Q DNA binding Sporadic

Family J022

Proband White 93 1909G→A, V637M SH2 Sporadic

Family J029

Proband White 62 1939A→G, N647D SH2 Transmitted

Mother White 4 None

Sister White 52 None

Sister White 69 1939A→G, N647D SH2 Transmitted

Niece White 29 None

Niece White 56 1939A→G, N647D SH2 Transmitted

Family J030

Proband Black 65 1145G→A, R382Q DNA binding De novo

Father Black 4 None

Mother Black 10 None

Family J035

Proband White 77 1909G→A, V637M SH2 Sporadic

Daughter White 76 1909G→A, V637M SH2 Transmitted

Daughter White 27 None

Wife White 1 None

Family J045

Proband Hispanic 64 1144C→T, R382W DNA binding Sporadic

Family J053

Proband White 87 1915C→G, P639A SH2 Sporadic

Family J054

Proband White 78 1393T→G, S465A DNA binding Sporadic

Family J068

Proband White 73 1144C→T, R382W DNA binding Sporadic

Family J074

Proband White 69 1954G→A, E652K SH2 Sporadic

Husband White 1 None

Daughter White 64 1954G→A, E652K SH2 Transmitted

Daughter White 54 1954G→A, E652K SH2 Transmitted

Family J083

Proband White 84 1909G→A, V637M SH2 Sporadic

Sister White 36 None

Mother White 4 None
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such as that involving the interferons and STATs, 
is altered in patients with the hyper-IgE syndrome 
(Fig. 1D in the Supplementary Appendix).

Cytokine Expression in Leukocytes

Consistent with the microarray data, cytokine pro-
tein levels were elevated in the supernatants of leu-
kocytes from patients with the hyper-IgE syndrome 
as compared with those of controls, depending 
on the stimulus (Table 1). For example, tumor 
necrosis factor α (TNF-α) levels were higher in the 
supernatants of leukocytes from patients with 
the hyper-IgE syndrome than in those from con-
trols, after the leukocytes were stimulated by 
the toll-like receptor 4 agonist lipopolysaccha-
ride alone (P = 0.003) or by lipopolysaccharide 
and interferon-γ (P = 0.03). TNF-α levels were also 
elevated in the supernatants from leukocytes of 
patients after exposure to the toll-like receptor 
2 agonist heat-killed Listeria monocytogenes (P<0.001) 

or to S. aureus Cowan strain (P = 0.001). Similarly, 
stimulation with lipopolysaccharide or lipopoly-
saccharide and interferon-γ resulted in elevated 
interleukin-12p70 production in patients with the 
hyper-IgE syndrome, as compared with controls 
(P = 0.001 and P = 0.003, respectively). In response 
to the nonspecific T-cell mitogen phytohemag-
glutinin or phytohemagglutinin and interleukin-
12, interferon-γ levels were also elevated in the 
patients (P = 0.03 for both comparisons). In con-
trast, we found diminished production of mono-
cyte chemoattractant protein 1 in leukocytes from 
patients, as compared with control leukocytes, af-
ter exposure to interleukin-6 (P = 0.03) (Table 1).

In aggregate, these data indicated a defect lead-
ing to elevated cytokine production in response 
to certain stimuli but impaired signaling through 
the interleukin-6 receptor. Since the production 
of monocyte chemoattractant protein 1 after stim-
ulus with interleukin-6 was impaired in the leu-

Table 2. (Continued.)

Member
Race or Ethnic 

Group†
Hyper-IgE  

Syndrome Score‡ Mutation

Nucleotide and Amino Acid Domain Type

Family J087

Proband White 69 1387delGTG; V463del DNA binding Sporadic

Daughter White 82 1387delGTG; V463del DNA binding Transmitted

Family J088

Proband White–Hispanic 76 1145G→T, R382L DNA binding Sporadic

Family J098

Proband White 65 1909G→T, V637L SH2 Sporadic

Family J100

Proband Hispanic 81 1909G→A, V637M SH2 Sporadic

Family J112

Proband White 52 1970A→G, Y657C SH2 Sporadic

Son White 31 1970A→G, Y657C SH2 Transmitted

Family J113

Proband White 58 1145G→A, R382Q DNA binding Sporadic

Mother White Not scored None

Family J121

Proband White 65 1930delCAG; Q644del SH2 Sporadic

*	Probands and family members are included if DNA samples were obtained for sequencing. SH2 denotes SRC homology 2.
†	Race or ethnic group was determined by a physician author or was self-reported.
‡	The hyper-IgE syndrome scores were arbitrarily categorized as follows: 0 to 15, unaffected; 16 to 39, possibly affected; 40 to 59, probably af-

fected; and 60 or more, definitely affected.
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kocytes of patients with the hyper-IgE syndrome, 
we decided to investigate components of the in-
terleukin-6 signal-transduction pathway.

STAT3 Mutations in the Hyper-IgE Syndrome

Expression levels of the interleukin-6 receptor 
(IL6R or CD126) and the interleukin-6 signal trans-
ducer (IL6ST, CD130, or gp130) were normal on 
cells from patients with the hyper-IgE syndrome 
(data not shown). We inferred that Janus kinase 1 
was intact in cells from patients, because it medi-
ates TNF-α production in response to interferon-γ. 
STAT3 is physically associated with gp130, and 
its deletion in animal models and inhibition in 
tumor-cell lines is associated with increased pro-
duction of interferon-γ and TNF-α.18 We there-
fore sequenced STAT3 in DNA samples obtained 
from 50 persons affected with the hyper-IgE syn-
drome and 48 unaffected relatives from 35 inde-
pendent and unrelated white, Asian, Hispanic, 
or black families (Table 2). Seven patients had 
de novo STAT3 mutations, 17 had familial trans-
mission of STAT3 mutations, and 26 had sporadic 
STAT3 mutations (defined as those for which the 
parents were reported to be clinically unaffected 
and, in cases in which DNA was available for anal-
ysis, did not carry a STAT3 mutation), 1 of whom 
had chimerism for the STAT3 mutation. All STAT3 
mutations localized to regions encoding the DNA-
binding or SH2 domains; several mutational “hot 
spots” were apparent (Fig. 1). For example, 13 
mutations from unrelated patients affected the 
arginine (R) residue at position 382 in the DNA-
binding domain. Several other residues in the 
DNA-binding domain — phenylalanine (F) at po-
sition 384, arginine (R) at position 423, and va-
line (V) at position 463 — were each affected by 
at least two de novo mutations. The SH2 domain 
has a hot spot at position 637; we found seven 
mutations from unrelated patients that involved 
the valine (V) residue normally found at this po-
sition. All mutations are missense or in-frame 
deletions, consistent with protein expression, and 
affect residues included in all splice variants of 
STAT3.19 We did not find any of the mutations in 
the 158 unaffected control subjects of various an-
cestral origins.

The hyper-IgE syndrome scores9 generally cor-
related well with the STAT3 genotypes. Parents 
of probands with sporadic mutations from whom 
DNA samples could be obtained did not have the 
STAT3 mutation, indicating a substantial incidence 

of new mutations (Fig. 2). In Families J002, J014, 
and J016, the mutation in the proband was de novo 
and was associated with a high hyper-IgE syn-
drome score in the proband and offspring (if pres-
ent), as well as with clinical disease. We could not 
collect DNA from both parents of every proband, 
but even in families in which DNA from one parent 
was available (such as Family J007), if a STAT3 mu-
tation occurred in a definitely affected individual, 
it was transmitted with disease as a stable autoso-
mal dominant trait. Relatives of the proband who 
were possibly or probably affected (hyper-IgE syn-
drome scores of 16 to 59) did not necessarily have 
mutations, such as the father of the proband in 
Family J002 who had a hyper-IgE syndrome score 
of 33 and the sister in Family J014 who had a score 
of 31. Because the scoring system is tied to medi
cal complications that accumulate over time, the 
scores of 34 in the children with a STAT3 mutation 
in Family J016 are consistent with being affected 
with the hyper-IgE syndrome, since they were only 
11 and 14 years old at the time of testing.

Bioinformatics Analysis with SIFT  
and PolyPhen

Thirteen of the 16 missense mutations identified 
are predicted to be possibly or probably damag-
ing to STAT3 function according to at least one 
of the two methods (Table 6 in the Supplemen-
tary Appendix). R423Q, a recurrent mutation, is 
not predicted to be damaging but is clearly as-
sociated with disease in Families J007 and J016.

Functional Studies

Phosphorylation and expression of STAT3, as de-
termined with the use of flow cytometry, was 
equivalent in the leukocytes from patients and 
those from controls (Fig. 3 in the Supplementary 
Appendix). The trafficking of STAT3 from the cy-
toplasm into the nucleus of leukocytes from pa-
tients was grossly normal (data not shown). 
Unlike in mouse models of STAT3 mutation,20 su-
peroxide production by neutrophils from patients 
in response to opsonized zymosan and N-formyl-
methionyl-leucyl-phenylalanine and phorbol myr
istate acetate was normal, as was killing of staphy-
lococci by neutrophils in vitro (data not shown). 
Although interferon-γ and related proinflamma-
tory cytokines prolong neutrophil survival, and 
our microarray suggested that this should be the 
case,21 the rates of spontaneous and phagocyto-
sis-induced apoptosis did not differ between poly-
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morphonuclear leukocytes from patients with the 
hyper-IgE syndrome and those from controls (data 
not shown). This is consistent with an inability of 
mutant STAT3 to promote cytokine-mediated de-
lay of neutrophil apoptosis.22

Discussion

STAT3 mutation is the predominant cause of spo-
radic and familial hyper-IgE syndrome, although 
other genomic loci may also be involved. Within 
the gene encoding STAT3, we found mutational 
hot spots, indicated by independent mutations that 
affect the same codons, in the evolutionarily con-
served SH2 and DNA-binding domains of STAT3. 
These mutations are predicted not to affect pro-
tein levels of STAT3 and are consistent with the 
survival of those carrying the mutations. In sup-
port of STAT3 as the cause of the hyper-IgE syn-
drome, Minegishi et al. found STAT3 mutations 
affecting the DNA-binding domain in 8 of 15 pa-
tients examined.23 Therefore, all mutations associ-
ated with the hyper-IgE syndrome identified to 
date are restricted to the DNA-binding or SH2 re-
gions of STAT3. These mutations are likely to pre-
serve protein levels, phosphorylation, and nuclear 
localization. Mice with half the normal dose of 
Stat3 seem unaffected, suggesting that haploinsuf-
ficiency is an unlikely pathogenic mechanism.24

A patient with a newly discovered primary im-
munodeficiency with mild IgE elevation due to 

homozygous recessive tyrosine kinase 2 deficiency 
has also been reported,25 but this patient differs 
from our patients with classic hyper-IgE syndrome 
in the pattern of inheritance, susceptibility to vi-
ral infection, the degree of IgE elevation, and the 
absence of nonimmune features. Patients with the 
syndrome reported as autosomal recessive hyper-
IgE syndrome also differ from those with the clas-
sic hyper-IgE syndrome described here in that they 
have fewer pulmonary infections and pneumato-
celes, more viral infections, and vasculitis.26 In 
keeping with these clinical differences, an index 
patient with autosomal recessive hyper-IgE syn-
drome from our original report26 had no STAT3 
mutations (data not shown).

STAT3 mutations in the hyper-IgE syndrome 
clarify many disparate aspects of the syndrome 
that have puzzled investigators. Targeted muta-
tions in mice show specific roles of Stat3 in or-
ganogenesis, organ preservation, and organ-spe-
cific inflammation, distinct from hematopoiesis. 
Stat3 deficiency specific to the pulmonary epithe-
lium in mice exposed to hyperoxia causes exces-
sive lung inflammation and airspace enlarge-
ment,27 and lung expression of Stat3 is critical 
for repression of the inflammatory response to 
lipopolysaccharide20; these observations are con-
sistent with the development of pneumatoceles 
after infection in patients with the hyper-IgE syn-
drome. Myeloid-specific Stat3 deficiency causes in-
creased myelopoiesis and eosinophilia in mice,28 
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and eosinophilia is a consistent feature of the 
hyper-IgE syndrome.3 Hematopoiesis-specific Stat3 
deletion in the mouse is associated with osteo-
clast generation and osteopenia,29 phenotypes also 
found in persons with the hyper-IgE syndrome.30 
Ligand binding of the receptor for interleukin-22 
(composed of IL-22R1 and IL-10R2), expressed 
predominantly on epithelial cells (including those 
making up the skin and lung),31 invokes STAT3-
mediated expression of β-defensins.32 Impaired 
defensin production in the skin and lung may ex-
plain the predilection for skin and lung abscess-
es in patients with the hyper-IgE syndrome. The 
depletion of Stat3 in mouse cardiac myocytes is 
associated with increased production of TNF-α 
by these cells and with cardiac inflammation and 
dysfunction,33 consistent with coronary-artery an-
eurysms recently described in adult patients with 
the hyper-IgE syndrome.5 Similarly, a deficiency 
of Stat3 in the mouse brain is associated with 

increased inflammation, demyelination, and as-
trocytosis in response to nerve injury,34 consis-
tent with the parenchymal brain lesions found in 
persons with the hyper-IgE syndrome.6

STAT3 up-regulates myeloid adhesion,35 expres-
sion of PU.1,36 expression of secondary granule 
proteins in neutrophils,37 the interleukin-23 recep-
tor, the generation of interleukin-17–producing 
CD4+ T lymphocytes,38 and the antiinflammatory 
effects of interleukin-10.18 In contrast, STAT3 down-
regulates expression of T-bet, GATA3, IL12Rb2, and 
IFNγ,38 as well as the formation of osteoclasts.29 
Therefore, STAT3 deficiency leads to the up-regu-
lation of many cytokines secreted by type 1 helper 
T cells (e.g., interferon-γ or TNF-α), and down-
regulation of the inflammatory and antiinflamma-
tory responses governed by interleukin-6 and inter-
leukin-10.20 Patients with the hyper-IgE syndrome 
have retarded and inadequate inflammatory re-
sponses in the skin, leading to cold abscesses, and 
destructive inflammation in the lung, leading to 
pneumatoceles. The extraordinary elevation of the 
IgE level in persons with the disorder, seen from 
birth through adulthood and uncorrelated with 
eosinophilia,3 may reflect the known role of 
STAT3 in mediating interleukin-21 receptor sig-
naling, since interleukin-21 receptor α–knockout 
mice have elevated IgE levels.39

In conclusion, the newly recognized genetic 
cause of the hyper-IgE syndrome — STAT3 muta-
tion — affects complex, compartmentalized so-
matic and immune regulation. The discovery of 
this genetic cause opens new doors to understand-
ing organ-specific infection, inflammation, and 
therapy.
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