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Recently, two SCID (severe combined immunodeficiency
disease) patients with greatly diminished T cells but normal or
increased numbers of B and NK cells (T–B+NK+ SCID) were
found to have mutations in the gene for the IL-7 receptor. This
has established a major role for IL-7-receptor-dependent
signaling in T cell development in humans and probably
explains the diminished T cell numbers seen in patients with
X-linked SCID or SCID that results from Jak3-deficiency.
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Abbreviations
IL-7R IL-7 receptor
Jak3 Janus tyrosine kinase 3
PI 3-K phosphatidylinositol-3′-OH kinase
SCID severe combined immunodeficiency disease
Stat signal transducer and activator of transcription
XSCID X-linked SCID

Introduction
Severe combined immunodeficiency disease (SCID) repre-
sents the most severe form of primary immunodeficiency
diseases, affecting one child in approximately every 80,000
live births [1]. These children exhibit profound defects in
cellular and humoral immunity, with death occurring within
the first year of life due to severe and recurrent opportunis-
tic infections unless they receive a successful bone marrow
transplant [2]. SCID is a syndrome with many causes and,
although the genetic basis for many of the defects has now
been elucidated, in approximately 30% of cases this basis
remains unknown [1].

A common feature in SCID patients is a profound defect
in T cell development and/or function. The range of
defects in B- or NK-cell development and/or function is
more variable [3]. Accordingly, it is possible to classify
SCID into four groups: T–B–NK–, T–B–NK+, T–B+NK–

and T–B+NK+ SCID [4••]. In this review, we will focus on
the T–B+NK– and T–B+NK+ forms of SCID resulting from
mutations in genes required for the function of the
IL-7/IL-7R (IL-7 receptor) signaling pathway.

T–B+NK– SCID: γγc-deficient and Jak3-deficient
patients
The most common form of SCID is X-linked SCID
(XSCID), which accounts for almost 50% of cases of SCID
[1,5]. In XSCID, affected males typically have few if any

T or NK cells but have normal or increased numbers of
B cells (T–B+NK– SCID); however, the B cells are non-
functional and exhibit defective class switching, due only
in part to the absence of T cell help [5]. Earlier work local-
ized the defective gene in XSCID (in the SCIDX1 locus)
to the chromosomal region between Xq11 and Xq13 [6].
Subsequently, the gene encoding the IL-2R γ chain was
cloned [7] and localized to Xq13 [8], at the SCIDX1 locus.
DNA sequencing then established that mutations in
IL2RG represent the basis for XSCID [8] (see Figure 1).

Because XSCID patients exhibit a more severe immuno-
logical phenotype than patients with IL-2 deficiency,
where T- and NK-cell development are normal, it was
hypothesized that IL-2Rγ was a component of more than
one cytokine receptor [8], at least one of which was
required for lymphoid development. Indeed, IL-2Rγ was
shown to also be a shared component of the receptors for
IL-2, IL-4, IL-7, IL-9 and IL-15, and was therefore
renamed as the common cytokine receptor γ chain, γc
(reviewed in [5,9,10]; see Figure 1).

In one family pedigree, affected males exhibit a more
moderate form of X-linked combined immunodeficiency
and live until adulthood [11]. These patients were found
to exhibit partial T cell development resulting from a point
mutation in the γc cytoplasmic domain that reduces the
interaction between γc and its associated tyrosine kinase
Jak3 (Janus tyrosine kinase 3) [11]. It was thus hypothe-
sized that mutations in Jak3 might result in a similar
phenotype to that found in XSCID but with an autosomal
recessive mode of inheritance, as the JAK3 gene is located
on chromosome 19 [12]. Patients with mutations in JAK3
were indeed reported, having a phenotype indistinguish-
able from that found in XSCID patients [13,14], indicating
that most if not all γc-dependent signals require Jak3 and
that Jak3 only contributes to γc-dependent signaling.

In patients with XSCID or with Jak3 deficiency, the sever-
ity of the phenotype is explained by the disruption of five
signaling pathways: those for IL-2, IL-4, IL-7, IL-9 and
IL-15 [5]. IL-2 and IL-4 do not appear to contribute to lin-
eage development. However, defective IL-15 signaling
may explain the defect in NK cell development (reviewed
in [15]) whereas IL-7 (see below) and perhaps IL-9 [16]
are critical for early T cell development. 

T–B+NK+ SCID: relationship to the IL-7
signaling pathway
Il7/Il7r-deficient mice
IL-7 signals through a receptor containing the IL-7R α
chain and γ c [5]. Deletion of the Il7 [17] or Il7r [18]
genes in mice or treatment of mice with antibodies
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against IL-7 [19] or against IL-7Rα resulted in a pro-
found B-cell and T-cell lymphopenia and absent γδ
T cells; NK cell numbers and function were normal
[20,21]. The reduced T and B cell development in these
mice was comparable to that observed in γc-deficient
[22,23] or Jak3-deficient mice [24,25]. Il7r–/– mice

exhibit a block early in T-cell development at the pro-
T2 stage (CD44+CD25+HSA+CD4–CD8–); some
peripheral T cells are present but have impaired sur-
vival [26]. Regarding B cell development, whereas
Il7r–/– mice exhibit a block at the transition between
pre-pro-B and early pro-B stages, Il7–/– mice have a later

Figure 1

Causes of T–B+NK– and T–B+NK+ SCID.
(a) Mutations in the genes encoding γc or
Jak3 result in T–B+NK– SCID. The schematic
shows that γc is shared by the receptors for
IL-2, IL-4, IL-7, IL-9 and IL-15. Two receptor
subunits other than the γc subunit are shown
in the figure because the high affinity IL-2R
and the IL-15R have three subunits; however,
it should be noted that the IL-4, IL-7 and IL-9
receptors each only have two subunits.
(b) Mutations in the IL7R gene cause
T–B+NK+ SCID.
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block — at the transition between the late pro-B and the
pre-B stages. Thymic stromal lymphopoietin (TSLP),
which signals through a receptor containing IL-7Rα but
not γc [27–29], may be the cytokine that explains this
difference between Il7–/– and Il7r–/– mice.

Strikingly, whereas mice made deficient for γc, Jak3, IL-7
or IL-7Rα show a profound defect in B cell development
and reduced peripheral B cells, humans with XSCID or
SCID due to Jak3 deficiency have either normal or
increased numbers of B cells. Therefore, IL-7 either does
not contribute to B cell development in humans or its
function in this regard is redundant.

IL-7R-deficient SCID patients
To investigate whether the defect in the IL-7 signaling
pathway in XSCID and Jak3-deficient patients was
responsible for defective T cell development, we sought to
identify SCID patients with an autosomal recessive form
of deficiency of unknown genetic origin, in which T cell
development was selectively impaired. 

In a study of 108 children with SCID [1], two children
exhibited a selective defect in T cell numbers and func-
tion but retained normal or increased numbers of B cells
and functional NK cells (T–B+NK+ SCID). They were
believed to have an autosomal recessive form of SCID of
unknown genetic cause [1]. Although no defect in IL7
mRNA levels or sequence was found in Epstein–Barr virus
(EBV)-transformed B-cell lines established from either
patient, IL7R mRNA levels were not detected or were
greatly reduced compared to the levels expressed in EBV-
transformed B cells from normal donors [30]. The patient
with diminished IL7R mRNA levels had two mutations: on
one allele, there was a splice-junction acceptor mutation in
intron 4 (AG→AA) whereas the other allele contained a
non-sense mutation with a premature stop codon
(TGG→TGA: Trp217→stop) in exon 5. Whereas his moth-
er was heterozygous for the splice-junction acceptor
mutation, the premature stop codon was a spontaneous
mutation [30]. The second patient had no detectable IL7R
mRNA and was found to be homozygous for a mutation
located at the exon-2/intron-2 splice-donor site (GT→GG)
[4••]. Both parents were heterozygous for the mutation and
interestingly only expressed the wild-type allele [30]. 

Thus, both of these SCID patients had point mutations in
their IL7R genes that prevented the production of a func-
tional IL-7Rα protein as a basis for the absence of T cells
(Figure 1). Moreover, these data suggest that the T cell
defect observed in XSCID and in Jak3-deficient SCID
patients can largely if not entirely be attributed to the
defective IL-7 signaling. The normal or increased num-
bers of functional NK cells indicate that IL-7 signaling is
not involved in NK cell development or function [30].
Instead, the disruption of the IL-15 signaling pathway in
XSCID or Jak3-deficient patients probably explains the
absence of NK cells. Finally, this study also excluded a

major role for the IL-7/IL-7R signaling pathway in B cell
development in humans, in contrast to the markedly
defective B cell development in mice lacking expression of
Il2rg, Jak3, Il7 or Il7r.

Consistent with these findings, an atypical case of XSCID
with a selective T cell defect has been described [31]. This
patient had a mutation in the extracellular domain of γc
(Ala156→Val) that affected IL-4 and IL-7 binding and sig-
naling; IL-2 and IL-15 signaling were relatively normal. As
IL-4 signaling does not seem to be required for T cell
development, the selective T cell defect in this patient
probably results from defective IL-7 signaling [31].

Signaling pathways activated by IL-7
Consistent with its role in lymphoid development, IL-7 is
mainly produced by bone marrow and thymic stromal cells.
Additionally, it is produced by the intestinal epithelium to
help in the extrathymic development of γδ T cells [32,33]
and also by monocytes/macrophages, follicular dendritic
cells, keratinocytes and certain B-cell lines (reviewed in
[34]). IL-7 signaling is involved in several processes,
including cell survival, by protecting against cell death and
by expanding cells during lymphoid development (for
reviews, see [34,35•,36]).

IL-7 induces the activation of both Jak1 and Jak3, which
interact with IL-7Rα [37,38] and γ c [11,39,40] respectively,
promoting the activation of signal transducer and activator
of transcription (Stat)3, Stat5a and Stat5b [12,37] (Figure 2).
Both Jak1–/– [41] and Jak3–/– [24,25] mice have profound
defects in lymphoid development with a severe reduction
in thymocyte numbers, showing the importance of Jak1 and
Jak3 for IL-7-induced growth effects and proliferation.
Mice lacking Stat5a, Stat5b or both Stat5 proteins have nor-
mal or only slightly reduced thymic cellularity [42–44];
nevertheless, Stat5 proteins are likely to be involved in
T cell differentiation [45,46]. Notably, IL-7 is indispens-
able for γδ T cell development [20] and Stat5a–/– but not
Stat5b–/– mice show a reduced number of γδ T cells; thus,
Stat5a may be required for their development [42].

IL-7 has also been shown to activate the phosphatidylinos-
itol-3′-OH kinase (PI 3-K) pathway. A direct interaction of
PI 3-K with the phosphorylated tyrosine residue 429 on
IL-7Rα has been demonstrated [47]; this same tyrosine
mediates the docking of Stat5 proteins [48]. The activation
of the PI 3-K has been shown to be essential for the IL-7-
mediated survival and proliferation of T cell precursors
[45]. Moreover, disruption of the p85α regulatory subunit
of PI 3-K leads to impaired B cell development at the
pro-B cell stage, with a reduced number of mature B cells
[49,50]. Thus, PI 3-K appears to be involved both in T- and
B-cell development. IL-7 has also been shown to induce
tyrosine phosphorylation of insulin-receptor substrate
(IRS)-1 and -2, which then associate with p85 [51]. IL-7
can also activate non-receptor protein tyrosine kinases
from the Src family: p59fyn [52] and p53lyn in human
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pre-B cells and p56lck and p59fyn in mature human T cells
[53]; however, their role in IL-7 responses remains unclear.

In addition to Jak/STAT, PI 3-K and Src kinases, a number
of other signaling molecules have been implicated in the
IL-7/IL-7R signaling pathway. Signal transducing adaptor
molecule (STAM) [54], MAP kinase family proteins (c-Jun
N-terminal kinase [JNK] and the p38 kinase [55]) may be
involved in T cell proliferation induced by IL-7. The pim1
proto-oncogene — which encodes a serine/threonine
kinase, whose expression is induced by IL-7 — is likely to
play an important role in the IL-7 signaling pathway, as
Pim-1 expression significantly restores thymic cellularity
and proliferation in γc- or Il7-deficient mice [56].

IL-7 signaling is important for cell survival, acting in part by
increasing and maintaining levels of the antiapoptotic protein
Bcl-2 (and perhaps Bcl XL) during lymphoid development
[57,58]. Impaired Bcl-2 expression has been found in devel-
oping thymocytes and mature T cells in Il7–/– and Il7r–/–

mice, and the expression of a Bcl2 transgene in Il7r–/– or
Il2rg–/– mice can partially rescue T lymphopoiesis (except
for γδ T cells) [59–63]. It is conceivable that IL-7 might also
induce cell survival by inhibiting proapoptotic proteins. In
addition to these effects, IL-7 promotes V(D)J recombina-
tion [64,65] although its effect in this regard may at least in
part be due to its effect as a survival factor [66]. Finally,
IL-7 has been suggested to regulate DNA accessibility of
target loci either by increasing levels of transcription factors
[65] or through a demethylation process [67].

Towards the identification of other genes that
when mutated will cause T–B+NK+ SCID
Although IL7R mutations can cause T–B+NK+ SCID,
there are other possible genetic causes for this syndrome.
The most obvious candidate gene whose mutation might
cause T–B+NK+ SCID is the IL7 gene. We hypothesize
that such patients would have a similar phenotype to IL7R-
deficient patients, except that they might fail to engraft
transplanted bone marrow as the host stromal cells would
be unable to secrete IL-7, which is necessary for the prop-
er development and expansion of donor T cells.

Conclusions
We have discussed defective cytokine signaling as a cause
of SCID. Mutations in IL7R, IL2RG (which encodes γc) or
the JAK3 genes abrogate T cell development in humans.
We presume that mutations in the IL7 gene will have a
similar effect. However, it is unclear that inactivation of a
single protein downstream of Jak3 would recapitulate the
defect in T cell development observed in IL7R-deficient
patients. Instead, a variety of signaling molecules includ-
ing Stat5a, Stat5b, Pim-1, Bcl-2, PI 3-K and perhaps others
may all contribute to IL-7-mediated T cell development.
Clarification of this issue may be difficult to obtain but
could at least partially be addressed by the eventual iden-
tification of patients with mutations in these individual
genes. Although disruption of the IL-7 signaling pathway

significantly accounts for the T cell defect in XSCID, it is
disruption of the IL-15 signaling pathway that is likely to
account for the NK cell defect in XSCID [68]. Again, clar-
ification of this issue awaits the identification of patients
with mutations in the IL15 or IL15R genes.

In addition to γc-dependent signaling pathways, it is
important to note that other cytokine signaling pathways
(for review see [10]) and TCR signaling pathways also play
major and perhaps overlapping roles during thymic devel-
opment [69,70]. Several molecules involved in these
signaling pathways have been shown to play a critical role
in early T cell development in knockout mice and indeed
defects in components of the TCR have been identified as
causes of human SCID (for a review, see [71]).
Interestingly, a male patient with SCID due to mutations
in the tyrosine phosphatase CD45 gene also has been
reported [72]. This patient had greatly diminished and
nonfunctional T cells, increased numbers of B cells and
reduced but detectable numbers of NK cells. Thus, defec-
tive T cell development can occur due to a variety of
defects. The identification of the full range of genetic
defects that can cause SCID will enhance our knowledge
of human immunology as well as have diagnostic and clin-
ical implications for treating this group of patients.
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